Modulation for Multipath

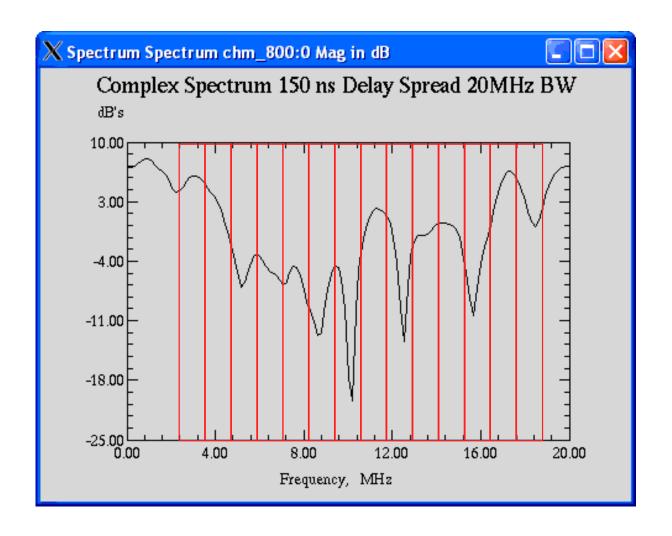
Orthogonal Frequency Division Multiplex (OFDM)

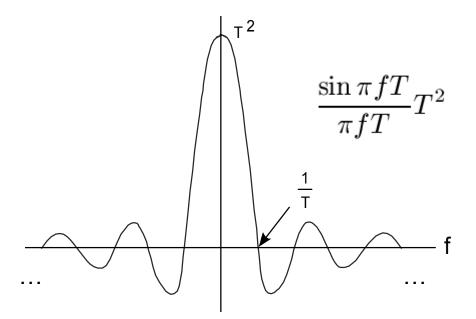
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is attached entitled "GNU Free Documentation License".

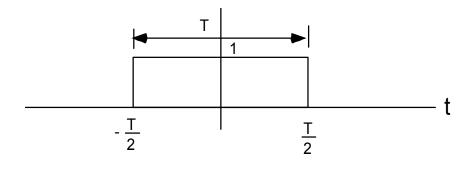
Silicon DSP Corporation

© 2007 Silicon DSP Corporation, All Rights Reserved

Multipath Channel: Multiple Sub Channels



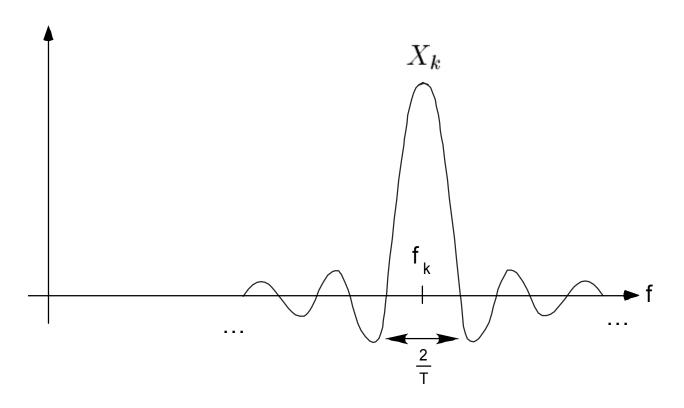


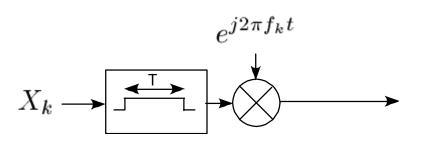


Fourier Transforms

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$$

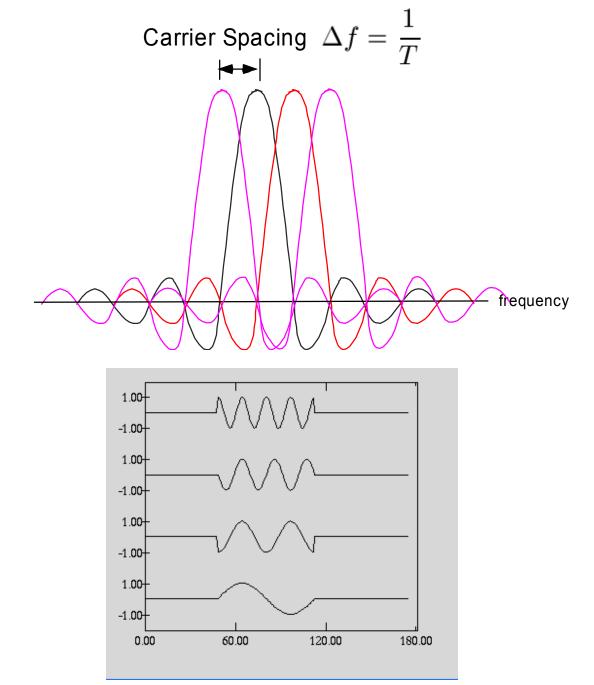
$$x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft} df$$



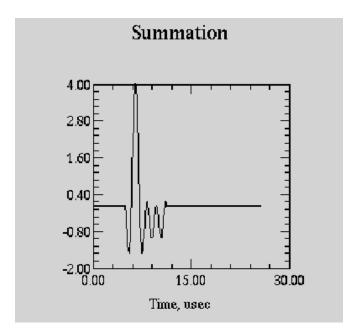


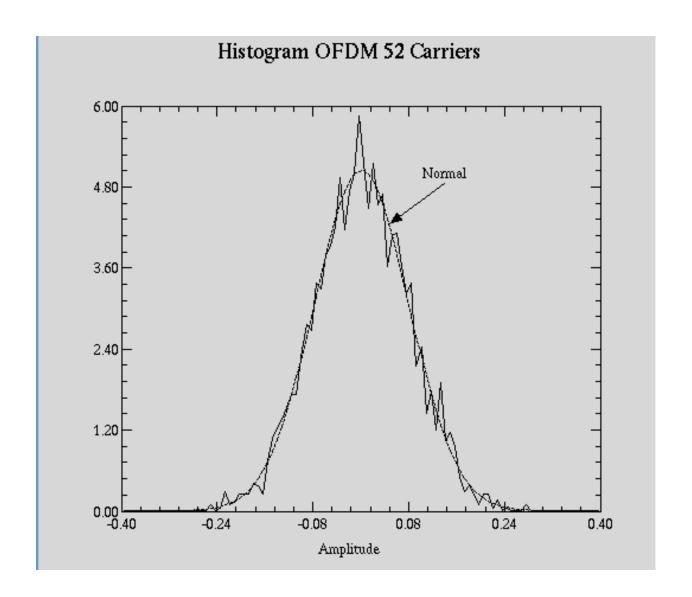
Modulation Property

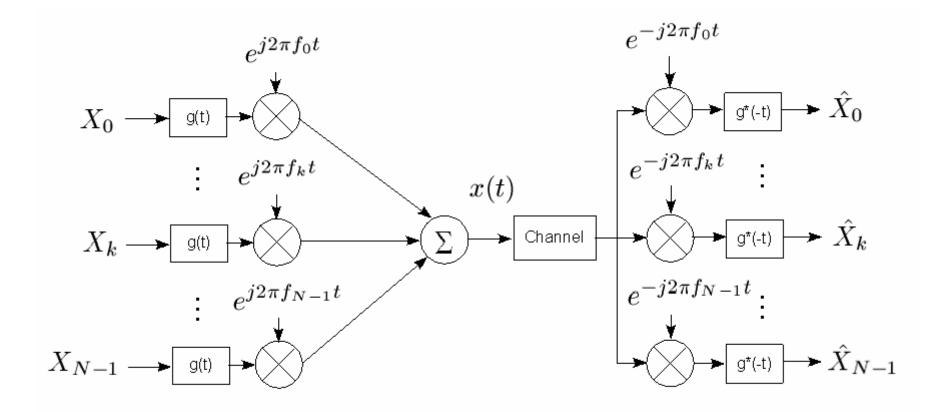
$$x(t)e^{j2\pi at}\leftrightarrow X(f-a)$$





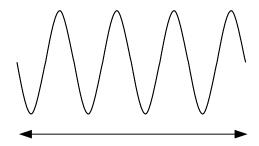






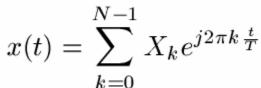
Derivation of DFT Formulation

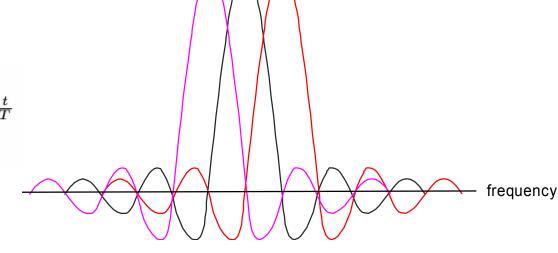
$$x(t) = \sum_{k=0}^{N-1} X_k e^{j2\pi f_k t}$$

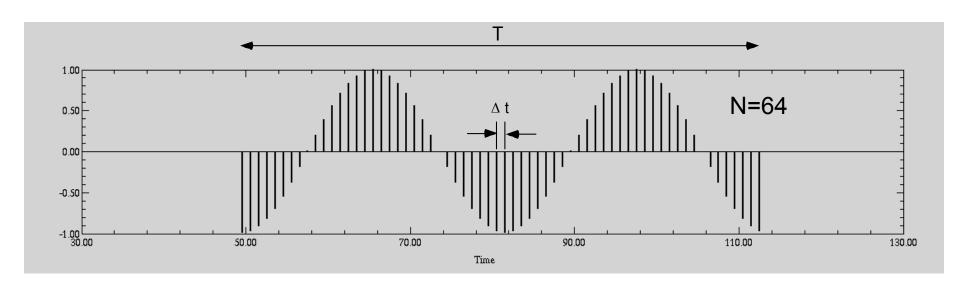


$$f_k = k\Delta f = \frac{k}{T}$$

Carrier Spacing
$$\Delta f = \frac{1}{T}$$







$$x_n = \sum_{k=0}^{N-1} X_k e^{j2\pi \frac{k}{T}n\Delta t} \qquad t_n = n\Delta t$$

$$\Delta t = \frac{T}{N}$$

$$x_n = \sum_{k=0}^{N-1} X_k e^{j2\pi \frac{k}{T} \frac{T}{N}n} \qquad x_n = \sum_{k=0}^{N-1} X_k e^{j2\pi \frac{k}{N}n}$$

Discrete Fourier Transform (DFT)

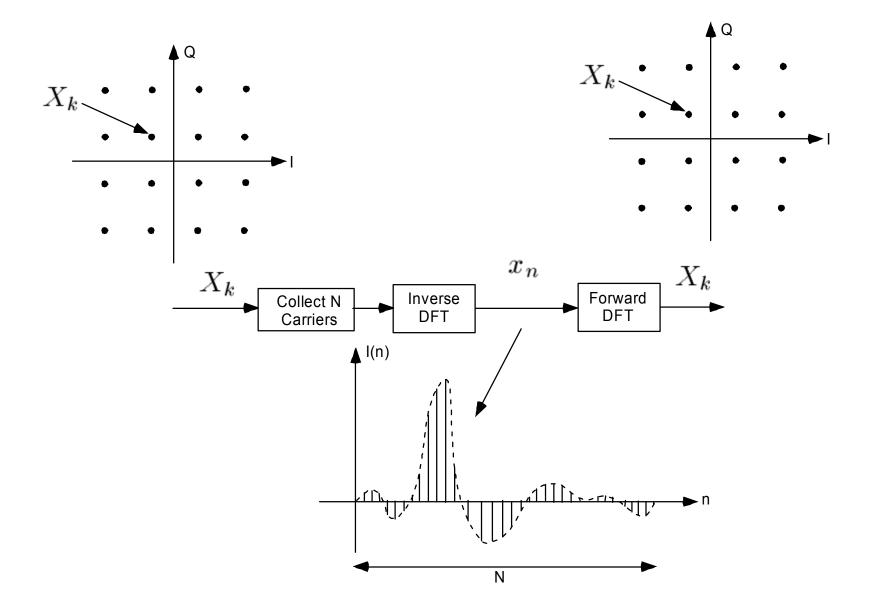
$$x_n = \sum_{k=0}^{N-1} X_k e^{j2\pi \frac{k}{N}n}$$

Definition of DFT

$$X_k = \sum_{n=0}^{N-1} x_n e^{-j2\pi \frac{k}{N}n}$$

Inverse of DFT

$$x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{j2\pi \frac{k}{N}n}$$



Matrix Formulation DFT

DFT
$$X_k = \sum_{n=0}^{N-1} x_n e^{-j2\pi \frac{k}{N}n}$$

$$\underline{\mathbf{x}} = \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_{N-1} \end{bmatrix} \qquad \underline{\mathbf{X}} = \begin{bmatrix} X_0 \\ X_1 \\ \dots \\ X_{N-1} \end{bmatrix}$$

$$\begin{bmatrix} X_0 \\ X_1 \\ \dots \\ X_{N-1} \end{bmatrix} = \begin{bmatrix} w^{00} & w^{01} & \dots & w^{0(N-1)} \\ w^{10} & w^{11} & \dots & w^{1(N-1)} \\ \dots & \dots & \dots & \dots \\ w^{(N-1)0} & w^{(N-1)1} & \dots & w^{(N-1)(N-1)} \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_{N-1} \end{bmatrix}$$

where w^{kn} are selected from the N roots of the unit circle $e^{-j\frac{2\pi}{N}}$,

$$\underline{\mathbf{X}} = \mathbf{W}\underline{\mathbf{x}}$$

$$w^{kn} = e^{-j\frac{2\pi}{N}kn}$$

Matrix Formulation Inverse DFT

DFT

$$\underline{X} = \mathbf{W}\underline{x}$$

Inverse DFT

$$\underline{\mathbf{x}} = \frac{1}{N} \mathbf{W}^{\mathbf{H}} \underline{\mathbf{X}}$$

Hermitian Transpose

$$\mathbf{W}^{\mathbf{H}}$$

$$X_k = \sum_{n=0}^{N-1} x_n e^{-j2\pi \frac{k}{N}n}$$

$$x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{j2\pi \frac{k}{N}n}$$

Fast Fourier Transform (FFT)

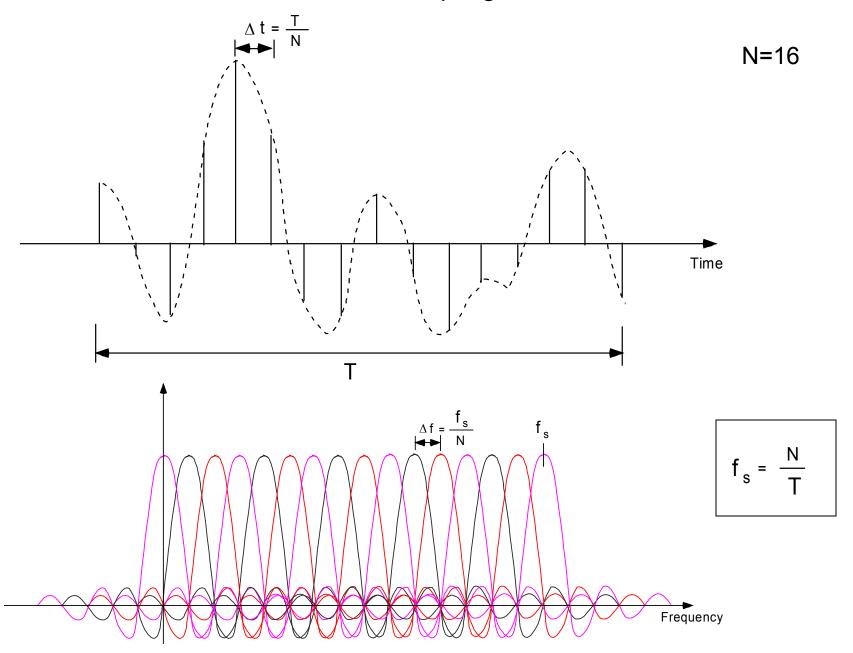
DFT and FFT Equivalent Mathematically (infinite precision)

DFT Requires Order N² Complex Multiplications

FFT Requires Order (N log₂ N) Complex Multiplications

N	DFT	FFT	Reduction Factor
64	4096	384	10.7
256	65536	2048	32
1024	1048576	10240	102

OFDM and Sampling Rate



OFDM Example IEEE 802.11a

Bandwidth=20 MHz

From previous slide then, f_s=20 MHz *that simple*.

Carrier Spacing determined by a number of factors.

- 1. Avoid Frequency Selective Fading in each subchannel
- 2. Keep FFT length reasonable
- 3. Satisfy overall throughput
- 4. Other factors (rates, robustness, carrier offset)

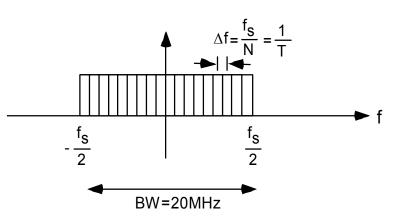
Let N=64. Then,

Carrier Spacing $\Delta f = f_s/N = 20MHz/64 = 312.5 KHz$

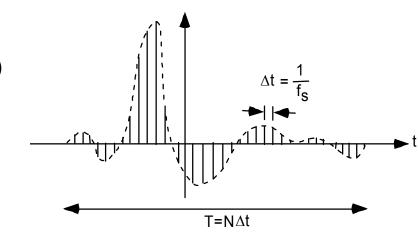
T= 1/Carrier Spacing =1/ Δf = 3.2 μ sec

Tolerable Delay Spread roughly 1-2 μsec

Complex Spectrum



Time Domain In Phase Component



OFDM Steady State Model

No Training / Acquisition/ Cyclic Prefix

